Tytuł pozycji:
Effect of Hybrid Composite Electrode (Cu/Cr/Wc/Ag) on Surface Integrity of Stainless Steel 304l Machined by EDM
Electrical Discharge Machining (EDM) is a modern technique extensively utilized across various industries to eliminate material using electrical discharges. Within the realm of EDM, a key obstacle involves identifying appropriate electrode materials capable of withstanding elevated temperatures and effectively eroding material from workpieces. Composite electrodes are becoming more commonly employed to tackle this issue, as a result of their exceptional electrical and thermal properties. The performance of a composite electrode that has been specifically improvement with (Cu-3%Cr-0.5%WC-1%Ag) is evaluated in this study using the stir casting technique. The investigation utilized stainless steel 304L as the workpiece material, and the performance of the composite electrode was evaluated against traditional pure copper electrodes. The results indicate that composite electrodes can decrease electrode wear and increase machining efficiency. The tool wear rate (TWR) for the composite electrode decreased to 0.0398 gm/min with a current of 10 A and a pulse-on time of 50 µs, along with a pulse-off time of 50 µs. In contrast, under the same conditions, the copper tool exhibited a TWR of 0.514 gm/min. The composite electrode achieved the highest material removal rate (MRR) at 59.7917 mm3/min, surpassing the copper electrode which had the lowest MRR at 54.5588 mm3/min. Additionally, the Surface Roughness (SR) of the composite electrode was measured at 3.253 μm, lower than the 3.967 μm of the pure copper electrode. These findings suggest that composite electrodes could serve as a viable substitute for conventional EDM electrodes.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).