Tytuł pozycji:
Cubic Algorithm to Compute the Dynkin Type of a Positive Definite Quasi-Cartan Matrix
Inflations algorithm is a procedure that appears implicitly in Ovsienko’s classical proof for the classification of positive definite integral quadratic forms. The best known upper asymptotic bound for its time complexity is an exponential one. In this paper we show that this bound can be tightened to O(n6) for the naive implementation. Also, we propose a new approach to show how to decide whether an admissible quasi-Cartan matrix is positive definite and compute the Dynkin type in just O(n3) operations taking an integer matrix as input.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).