Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities

Tytuł:
Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities
Autorzy:
Janczak, Andrzej
Korbicz, Józef
Data publikacji:
2019
Słowa kluczowe:
nonlinear system
parameter estimation
dynamic model
polynomial model
układ nieliniowy
estymacja parametru
model dynamiczny
model wielomianowy
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
A new two-stage approach to the identification of polynomial Wiener systems is proposed. It is assumed that the linear dynamic system is described by a transfer function model, the memoryless nonlinear element is invertible and the inverse nonlinear function is a polynomial. Based on these assumptions and by introducing a new extended parametrization, the Wiener model is transformed into a linear-in-parameters form. In Stage I, parameters of the transformed Wiener model are estimated using the least squares (LS) and instrumental variables (IV) methods. Although the obtained parameter estimates are consistent, the number of parameters of the transformed Wiener model is much greater than that of the original one. Moreover, there is no unique relationship between parameters of the inverse nonlinear function and those of the transformed Wiener model. In Stage II, based on the assumption that the linear dynamic model is already known, parameters of the inverse nonlinear function are estimated uniquely using the IV method. In this way, not only is the parameter redundancy removed but also the parameter estimation accuracy is increased. A numerical example is included to demonstrate the practical effectiveness of the proposed approach.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies