Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparative analysis of CNN-based smart pre‐trained models for object detection on DOTA

Tytuł:
Comparative analysis of CNN-based smart pre‐trained models for object detection on DOTA
Autorzy:
Hashmi, Hina
Dwivedi, Rakesh Kumar
Kumar, Anil
Data publikacji:
2024
Słowa kluczowe:
remote sensing images
CNN
R-CNN
transfer learning
object detection
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, we proposed a comparative research project on the classification of various objects in satellite images using some pre-trained models of CNN (VGG- 19, ResNet-50, Inception-V3, EfficientNet-B7) and R-CNN. In this research work, we have used the DOTA dataset, which combines data from 14 classes. We have imple- mented above-mentioned pre-trained models of CNN and R-CNN to achieve optimal results for accuracy as well as productivity in detection of various objects such as ships, tennis courts, swimming pools, vehicles, and harbors from remotely accessed images. In this study, a convolutional neural network (CNN) is used as the base model. For complex computations and for speeding up results, transfer learning is used. With the help of experimental analysis, we have discovered that R-CNN and Inception-V3 performed best out of the five pre-trained models
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies