Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimisation of femtosecond laser micromachining of copper with AI algorithms

To investigate the application of advanced artificial intelligence (AI) algorithms in optimising femtosecond laser micromachining processes for copper, addressing the critical need for precision and efficiency in micro-scale manufacturing. Design/methodology/approach The objectives are achieved by employing AI algorithms, including machine learning and neural networks, to analyse and optimise laser parameters for copper micromachining systematically. The approach combines theoretical modelling and experimental validation. Findings The research has shown that it is possible to apply artificial intelligence (AI) techniques for modelling and optimising quality characteristics in laser micromachining materials in a femtosecond regime. The results were promising with a challenging material and moderate-sized training set. The best validation performance was approx. 0.094. So far, this study provides basic guidelines for applying AI in laser micromachining of materials and adds to the newest research in this area. The results of the research also provide a deeper knowledge of the ablation mechanisms and will contribute to a coherent theory of ultrashort pulse laser–matter interactions. Research limitations/implications While this research represents a significant advancement in the field, it acknowledges certain limitations, primarily related to the complexity of femtosecond laser-material interactions and secondly related to small amounts of data, not easily scalable to feed the AI algorithms. Practical implications The outcomes of this study provide practical information for industries reliant on micro-scale manufacturing, such as electronics, micro-mechanics and precision instrumentation. Manufacturers can leverage the AI-driven optimization techniques presented here to improve product quality, reduce production costs, and expedite time-to-market. The optimised parameters result in reduced material waste, improved machining precision, and increased productivity. Originality/value The paper contributes to the field by demonstrating the original value of AI algorithms in optimizing femtosecond laser micromachining processes for copper. It introduces a novel approach marries cutting-edge AI techniques with intricate manufacturing processes, offering a unique perspective on the future of precision micro-manufacturing. The value of the research extends to materials scientists, manufacturing engineers, and AI practitioners seeking innovative solutions in materials processing and AI-driven optimisation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies