Tytuł pozycji:
Multiprocessor Scheduling Problem with Release and Delivery Times
The multiprocessor scheduling problem is defined as follows: tasks have to be executed on several parallel identical processors. For each task we know release time, processing time and delivery time. At most one job can be processed at a time, but all jobs may be simultaneously delivered. Preemption on processors is not allowed. The objective is to minimize the time, by which all tasks are delivered. Scheduling tasks among parallel processors is a NP-hard problem in the strong sense. The best known approximation algorithm is Jackson's algorithm, which generates the list schedule by giving priority to the ready job with the largest delivery time. This algorithm generates no delay schedules. We define an IIT (inserted idle time) schedule as a feasible schedule in which a processor is kept idle at a time when it could begin processing a task. The paper proposes the approximation inserted idle time algorithm for the multiprocessor scheduling. It is proved that deviation of this algorithm from the optimum is smaller then twice the largest processing time. To illustrate the efficiency of our approach we compared two algorithms on randomly generated sets of jobs.
1. Track 1: Artificial Intelligence
2. Technical Session: 13th International Workshop on Computational Optimization
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).