Tytuł pozycji:
O rozkładzie liczb naturalnych na sumę kwadratów liczb naturalnych
Praca ta porusza temat rozkładu liczb naturalnych na sumę kwadratów liczb naturalnych. Szczególną uwagę poświęcono twierdzeniu Fermata, dotyczącemu rozkładu liczb pierwszych postaci 4n+1 na sumę kwadratów dwóch liczb naturalnych. Szczegółowo przedstawiony został jeden z najmłodszych dowodów tego twierdzenia. Przytoczono również elementarny dowód twierdzenia Eulera mówiącego o tym, że jeżeli daną liczbę nieparzystą można zapisać w postaci sumy kwadratów dwóch liczb naturalnych na dwa sposoby, to liczba ta jest liczbą złożoną. Natomiast w ostatnim rozdziale przedstawiono twierdzenia dotyczące mocy zbiorów liczb pierwszych zawartych w ciągach liczb naturalnych stanowiących wartości pewnych wielomianów kwadratowych.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).