Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Investigating the effects of local weather, streamflow lag, and global climate information on 1 month ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA

Tytuł:
Investigating the effects of local weather, streamflow lag, and global climate information on 1 month ahead streamflow forecasting by using XGBoost and SHAP: two case studies involving the contiguous USA
Autorzy:
Liu, Jin
Ren, Kun
Ming, Tingzhen
Qu, Jihong
Guo, Wenxian
Li, Haohao
Data publikacji:
2023
Słowa kluczowe:
interpretable machine learning
extreme gradient boosting
Shapley additive explanations
streamflow forecasting
interpretowalne uczenie maszynowe
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The use of machine learning (ML) models for streamflow forecasting has recently proved highly successful. However, ML is typically criticized for a lack of interpretability. Here, we develop an interpretable ML model for 1-month-ahead streamflow forecasting using extreme gradient boosting (XGBoost) and Shapley additive explanations (SHAP). In addition to a performance evaluation of XGBoost compared to regression tree and random forest approaches, the effects of input variables, including local weather, streamflow lag, and global climate, on streamflow were interpreted in terms of SHAP total effect values, main effect values, interaction values, and loss values. The experimental results at two catchments in the contiguous USA are significant in four ways. First, XGBoost was superior to the other two models in terms of Nash–Sutclife efficiency, mean absolute error, root mean square error, and correlation coefficient. Second, by aggregating SHAP values, we found that the contributions of these variables to streamflow differed according to the investigated local perspectives, including streamflow at different months, low streamflow, medium streamflow, high streamflow, and peak streamflow. Third, the SHAP main effect and interaction values revealed that nonmonotonic relationships may occur between the input variables and streamflow, and the strength of variable interaction effects might be related to the variable values rather than their correlations. Fourth, variable drifts in the testing set were deduced from SHAP loss values. These findings exhibit positive significance for understanding ML for monthly streamflow forecasting.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies