Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effectiveness of Unsupervised Training in Deep Learning Neural Networks

Tytuł:
Effectiveness of Unsupervised Training in Deep Learning Neural Networks
Autorzy:
Rusiecki, A.
Kordos, M.
Data publikacji:
2015
Słowa kluczowe:
neural networks
deep learning
restricted Boltzmann Machine
contrastive divergence
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Deep learning is a field of research attracting nowadays much attention, mainly because deep architectures help in obtaining outstanding results on many vision, speech and natural language processing – related tasks. To make deep learning effective, very often an unsupervised pretraining phase is applied. In this article, we present experimental study evaluating usefulness of such approach, testing on several benchmarks and different percentages of labeled data, how Contrastive Divergence (CD), one of the most popular pretraining methods, influences network generalization.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies