Tytuł pozycji:
The impact of two independent gaussian white noises on the behavior of a stochastic epidemic model
The aim of this paper is to investigate a stochastic SIS (Susceptible, Infected, Susceptible) epidemic model in which the disease transmission coefficient and the death rate are subject to random disturbances. Using the convergence theorem for local martingales and solving the Fokker-Planck equation associated with the one-dimensional stochastic differential equation, we demonstrate that the disease will almost surely persist in the mean. In the case of global asymptotic stability of the endemic equilibrium for a SIS deterministic epidemic model, we formulate suitable conditions guaranteeing that the stochastic SIS model has a unique ergodic stationary distribution. Furthermore, we deal with the exponential extinction of the disease. Finally, some numerical simulations are provided to illustrate the obtained analytical results.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).