Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Developing Convolutional Neural Network for Recognition of Bone Fractures in X-ray Images

Tytuł:
Developing Convolutional Neural Network for Recognition of Bone Fractures in X-ray Images
Autorzy:
Saad, Aymen
Sheikh, Usman Ullah
Moslim, Mortada Sabri
Data publikacji:
2024
Słowa kluczowe:
convolutional neural network
X-ray images
deep learning algorithm
medical image analysis
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In the domain of clinical imaging, the exact and quick identification proof of bone fractures assumes a crucial part in a pivotal role in facilitating timely and effective patient care. This research tends to this basic need by harnessing the force of profound learning, explicitly utilizing a Convolutional Neural Network (CNN) model as the foundation of our technique. The essential target of our study was to improve the mechanized recognition of bone fractures in X-ray images, utilizing the capacities of deep learning algorithms. The use of a CNN model permitted us to successfully capture and learn intricate patterns and features within the X-ray images, empowering the framework to make exact fracture detections. The training process included presenting the model to a various dataset, guaranteeing its versatility to an extensive variety of fracture types. The results of our research show the excellent performance of the CNN model in fracture detection, where our model has achieved an Average Precision 89.5%, Average Recall 87%, and the overall Accuracy 91%. These metrics assert the vigour of our methodology and highlight the capability of deep learning in medical image analysis.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies