Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimization of Neural Network Model Design: An Electoral Cooperative Particle Swarm Optimization Approach

Tytuł:
Optimization of Neural Network Model Design: An Electoral Cooperative Particle Swarm Optimization Approach
Autorzy:
Li, D.
Xu, H.
Data publikacji:
2013
Słowa kluczowe:
particle swarm optimization (PSO)
neural network
back propagation
sieć neuronowa
propagacja wsteczna
optymalizacja rojem cząstek
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper proposes an electoral cooperative particle swarm optimization approach to optimize the model of neural network from both structure and linked weights. Different with other related research work, a new encoding method is adopted to divide the neural network into several modules, each of them corresponding to a sub-swarm. Based on the experiments on typical problems and classic dataset, the results show that the proposed algorithm outperforms all the compared ones in perspective of test error, correctness, connection number, and the CPU time of the training phase.
W przedstawionym artykule opisano zastosowanie metod optymalizacji roju cząstek do optymalizacji struktury i współczynników wagowych sieci neuronowej. Zaimplementowano nową metodę analizy, do dzielenia podzielenia sieci na moduły, reprezentujące mniejsze roje. Weryfikacja eksperymentalna i porównanie z metodami klasycznymi wykazały wysoką sprawność i skuteczność analizy.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies