Tytuł pozycji:
Identification of the flow pattern of liquid streams in the shell-side of a segmental-baffled shell-and-tube heat exchanger
Shell-and-tube heat exchangers are widely used in chemical and process engineering. Assessing hydrodynamics of fluid flow in their shell-side is a highly complex task. This results from the complex geometry of the shell-side itself, defined by such parameters as the tubesheet layout, tube diameter, baffle spacing or baffle cut. Shell-and-tube heat exchangers are the subject of many studies in which design and flow parameters are analysed. However, only a few studies concentrate on issues strictly related to the identification of streams of the liquid flowing in the shell-side of apparatus on an industrial scale. In this article, the authors present the results of an experimental visualization study, utilizing Particle Image Velocimetry (PIV). The experiment used a laser sheet technique along and across a tube bundle. The main results of the measurements and analyses concentrate on identifying the flow pattern of streams in the shell-side and assessing stagnation vortices and their consequences. Finally, detecting bypass streams and leakage streams flowing through design gaps between the shell and the tube bundle as well as between the baffles and the tubes in the bundle are presented.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).