Tytuł pozycji:
Prediction of quality parameters of a dry air separation product using machine learning methods
The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.
Celem pracy było prognozowanie wybranych parametrów produktu procesu suchej separacji za pomocą sortera pneumatycznego. Z punktu widzenia zastosowania węgla do celów energetycznych niezbędne jest określenie parametrów procesowych wydobycia, takich jak: zawartość popiołu, zawartość wilgoci, zawartość siarki czy wartość kaloryczna. Prognozowanie przeprowadzono przy użyciu wybranych algorytmów uczenia maszynowego, które okazały się skuteczne w prognozowaniu wyjścia różnych procesów technologicznych, w których zależności między parametrami procesu są nieliniowe. Źródłem danych wykorzystanych w pracy były eksperymenty procesu suchej separacji węgla. Zastosowano wieloraką regresję liniową jako bazową metodę predykcyjną. Wyniki pokazały, że w przypadku przewidywania zawartości wilgoci i siarki technika ta była wystarczająca. Bardziej złożone algorytmy uczenia maszynowego, takie jak maszyna wektorów nośnych (SVM) i perceptron wielowarstwowy (MLP) zostały wykorzystane i przeanalizowane w przypadku zawartości popiołu i wartości opałowej. Ponadto wdrożono technikę k-średnich. Rolą analizy skupień było uzyskanie dodatkowych informacji na temat próbek węgla będących wejściem procesu. Połączenie technik, takich jak perceptron wielowarstwowy (MLP) lub maszyna wektorów nośnych (SVM) z metodą k-średnich pozwoliło na opracowanie hybrydowego algorytmu. Takie podejście znacznie zwiększyło efektywność modeli predykcyjnych i okazało się użytecznym narzędziem w modelowaniu procesu wzbogacania węgla.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).