Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimization of extraction techniques and RP-HPLC analysis of anti-parkinson drug levodopa from flowers of Vicia faba L.

Tytuł:
Optimization of extraction techniques and RP-HPLC analysis of anti-parkinson drug levodopa from flowers of Vicia faba L.
Autorzy:
Bulduk, Ibrahim
Data publikacji:
2020
Słowa kluczowe:
Vicia faba
levodopa
extraction
HPLC
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Vicia faba, also known as “bakla” in Turkey, is a species of Fabaceae family that is widely grown in Africa and Asia. It is rich in levodopa, a medicinal substance used to treat Parkinson's disease. Levodopa produced by chemical synthesis is expensive and causes various side effects. Therefore, it is recommended to use natural levodopa sources to prevent possible side effects. A Central Composite Design technique has been used in this study to optimize levodopa extraction from Vicia faba. First, a single factor analysis examined 3 variables such as extraction temperature, extraction time, and concentration of acetic acid. The purpose of this study was to assess the effects of variables chosen on levodopa's extraction performance. By using variance and regression analyses, a second-order regression equation was determined as a predicted model. The value of R2 is 0.9882, which shows that the equation fits well. The best conditions are as follows: a temperature of 59.85 °C, an extraction time of 18.74 min, and an acetic acid content of 0.28%. Under optimum conditions, the maximum levodopa yield calculated from the predicted module was 4.53%. Extraction efficiency was determined as 4.54% experimentally under optimum conditions. A good relationship has been found between the experimental result and the predicted value.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies