Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

"An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization"

Tytuł:
"An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization"
Autorzy:
Puphasuk, Pikul
Wetweerapong, Jeerayut
Data publikacji:
2020
Słowa kluczowe:
continuous optimization
enhanced differential evolution algorithm
control parameter adaptation
switching crossover strategy
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Designing an efficient optimization method which also has a simple structure is generally required by users for its applications to a wide range of practical problems. In this research, an enhanced differential evolution algorithm with adaptation of switching crossover strategy (DEASC) is proposed as a general-purpose population-based optimization method for continuous optimization problems. DEASC extends the solving ability of a basic differential evolution algorithm (DE) whose performance significantly depends on user selection of the control parameters: scaling factor, crossover rate and population size. Like the original DE, the proposed method is aimed at efficiency, simplicity and robustness. The appropriate population size is selected to work in accordance with good choices of the scaling factors. Then, the switching crossover strategy of using low or high crossover rates are incorporated and adapted to suit the problem being solved. In this manner, the adaptation strategy is just a convenient add-on mechanism. To verify the performance of DEASC, it is tested on several benchmark problems of various types and difficulties, and compared with some well-known methods in the literature. It is also applied to solve some practical systems of nonlinear equations. Despite its much simpler algorithmic structure, the experimental results show that DEASC greatly enhances the basic DE. It is able to solve all the test problems with fast convergence speed and overall outperforms the compared methods which have more complicated structures. In addition, DEASC also shows promising results on high dimensional test functions.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies