Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model

Tytuł:
Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model
Autorzy:
Rahul, Jagdeep
Sharma, Lakhan Dev
Data publikacji:
2022
Słowa kluczowe:
CVDs
cardiovascular diseases
ECG
electrocardiogram
SWT
stationary wavelet transform
1-D CNN
Bi-LSTM
choroba sercowo-naczyniowa
EKG
elektrokardiogram
stacjonarna transformacja falkowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Cardiovascular diseases (CVDs) are a group of heart and blood vessel ailments that can cause chest pain and trouble breathing, especially while active. However, some patients with heart disease have no symptoms and may benefit from screening. Electrocardiogram (ECG) measures electrical activity of the heart using sensors positioned on the skin over the chest, and it can be used for the timely detection of CVDs. This work presents a technique for classification among lethal CVDs like atrial fibrillation (Afib), ventricular fibrillation (Vfib), ventricular tachycardia (Vtec), and normal (N) beats. A novel combination of Stationary wavelet transforms (SWT) and a two-stage median filter with Savitzky–Golay (SG) filter were utilised for pre-processing of the ECG signal followed by segmentation and z-score normalisation process. Next, 1-D six-layers convolutional neural network (1- D CNN) was used for automated and reliable feature extraction. After that, bidirectional long short-term memory (Bi-LSTM) was used in the back end for classification of arrhythmias. The novelty of the present work is the use of 1-D CNN and Bi-LSTM architecture followed by relevant and effective pre-processing of the ECG signal makes this technique accurate and reliable. An accuracy of 99.41 % was achieved using 10-fold cross validation, which is superior to the existing state-of-art methods. Thus, this method presents a noble, accurate, and reliable method for classification of cardiac arrhythmia beats.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies