Tytuł pozycji:
Mean-field optimal control problem of SDDES driven by fractional Brownian motion
We consider a mean-field optimal control problem for stochastic differential equations with delay driven by fractional Brownian motion with Hurst parameter greater than 1/2. Stochastic optimal control problems driven by fractional Brownian motion cannot be studied using classical methods, because the fractional Brownian motion is neither a Markov process nor a semi-martingale. However, using the fractional white noise calculus combined with some special tools related to differentiation for functions of measures, we establish necessary and sufficient stochastic maximum principles. To illustrate our study, we consider two applications: we solve a problem of optimal consumption from a cash flow with delay and a linear-quadratic (LQ) problem with delay.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).