Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Wykrywanie zdarzeń awaryjnych w silnikach indukcyjnych na podstawie analizy danych z rejestratorów zakłóceń

Tytuł:
Wykrywanie zdarzeń awaryjnych w silnikach indukcyjnych na podstawie analizy danych z rejestratorów zakłóceń
Autorzy:
Sajewicz, Dariusz
Łaguna, Wojciech
Chmielak, Waldemar
Data publikacji:
2023
Słowa kluczowe:
detekcja uszkodzeń
probabilistyczne uczenie maszynowe
przetwarzanie sygnału
FFT
fault detection
probabilistic machine learning
signal processing
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Celem artykułu jest wykazanie skuteczności nowo opracowanych metod detekcji uszkodzeń opartych na analizie danych z rejestratorów zakłóceń. W trakcie prac badawczych wyekstrahowano najbardziej istotne cechy sygnałów prądów w dziedzinie częstotliwości. Pozyskane cechy stanowiły podstawę budowy probabilistycznego klasyfikatora zdarzeń awaryjnych. Detekcja uszkodzeń dotyczy wykrywania: pękniętych prętów wirnika i stopnia jego degradacji oraz awarii łożysk na wale silnika. Przeprowadzone badania potwierdzają wysoką skuteczność wykrywania uszkodzeń we wszystkich rozpatrywanych obszarach.
The aim of this paper is to demonstrate the effectiveness of developed fault detection methods based on the analysis of data from fault recorders. During the research work, the most significant features of current signals in the frequency domain were extracted. The extracted features provided the base for building a probabilistic classifier of fault incidents. The fault detection concerned the detection of cracked rotor cages and the degree of its degradation as well as the failure of bearings on the motor shaft. The conducted research confirms the high efficiency of detection faults in all areas concerned.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies