Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparison of CNN and LSTM algorithms for solving the EIT inverse problem

This article presents comparative research to verify the suitability of selected machine learning methods for the problem of solving the inverse problem in electrical impedance tomography. The research involved the use of a tomograph to image areas of moisture inside the walls. The measurement data collected by the tomograph was transformed into 3D spatial images using two types of artificial neural networks - convolutional neural network (CNN) and recurrent long short-term memory network (LSTM).
W tym artykule przedstawiono badania porównawcze w celu weryfikacji przydatności wybranych metod uczenia maszynowego do zagadnienia polegającego na rozwiązaniu problemu odwrotnego w elektrycznej tomografii impedancyjnej. Badania polegały na wykorzystaniu tomografu do obrazowania obszarów zawilgocenia wewnątrz murów. Zgromadzone za pomocą tomografu dane pomiarowe zostały przekształcone na obrazy przestrzenne 3D za pomocą dwóch rodzajów sztucznych sieci neuronowych – konwolucyjne sieci neuronowej (CNN) oraz sieci rekurencyjnej typu long short-term memory (LSTM).
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies