Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modified Atom Search Optimization-based Deep Recurrent Neural Network for epileptic seizure prediction using electroencephalogram signals

Tytuł:
Modified Atom Search Optimization-based Deep Recurrent Neural Network for epileptic seizure prediction using electroencephalogram signals
Autorzy:
Borhade, Ratnaprabha Ravindra
Nagmode, Manoj S.
Data publikacji:
2020
Słowa kluczowe:
epileptic seizure
deep recurrent neural network
electroencephalogram signal
atom search optimization
antiepileptic drugs
napad padaczkowy
sieć rekurencyjna
sygnał elektroencefalograficzny
leki przeciwpadaczkowe
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Context and background: Epilepsy is considered as the common neurological disease in the world. Early prediction of epileptic seizure gained great influence on the epileptic patient's life. Epileptic patients suffer from unpredictable conditions that may occur at any moment. Motivation: Various epileptic seizure prediction methods are introduced for accurately predicting the pre-ictal state of human brain, but to determine the discriminative features poses a major challenge in the medical sector. Hypothesis: Develop a technique for epileptic seizure prediction using electroencephalogram signals that detects the epileptic seizure automatically. Method: In this research, an effective optimization algorithm, named Modified Atom Search Optimization-based Deep Recurrent Neural Network is proposed to perform accurate seizure prediction with less computation time. Here, the Deep Recurrent Neural Network classifier per-forms the seizure prediction using various hidden layers associated in the hierarchy layer based on the optimally selected features. The proposed Modified Atom Search Optimization algorithm is designed using the Squirrel Search Algorithm and Atom Search Optimization. It is worth interesting to note that the proposed Modified Atom Search Optimization-based Deep Recurrent Neural Network performed early and accurate seizure prediction using electroencephalogram signals. Result: The analysis of the proposed SASO-based Deep RNN is carried out using CHB-MIT Scalp EEG dataset using the metrics, namely accuracy, sensitivity, and specificity. The proposed algorithm obtained better performance in terms of specificity, accuracy, and sensitivity with the values of 97.536%, 96.545%, and 96.520% by varying training percentage, and 93.736%, 94.128%, and 96.520% by varying K-fold value. Conclusion: The proposed method has significant benefits like, faster convergence rate, easy to implement, low complexity, high speed, and robustness. The weights of the classifier are optimally trained using the proposed algorithm in order to reveal the effectiveness of prediction performance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies