Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A simulation model of seawater vertical temperature by using back-propagation neural network

Tytuł:
A simulation model of seawater vertical temperature by using back-propagation neural network
Autorzy:
Zhao, N.
Han, Z.
Data publikacji:
2015
Słowa kluczowe:
neural network
Agro data
vertical structure
surface temperature
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This study proposed a neural-network-based model to estimate the ocean vertical water temperature from the surface temperature in the northwest Pacific Ocean. The performance of the model and the sources of errors were assessed using the Gridded Argo dataset including 576 stations with 26 vertical levels from surface (0 m)–2,000 m over the period of 2007–2009. The parameter selection, model building, stability of the neural network were also investigated. According to the results, the averaged root mean square error (RMSE) of estimated temperature was 0.7378 °C and the correlation coefficient R was 0.9967. More than 67% of the estimates from the four selected months (January, April, July and October) lay within ± 0.5 °C. When counting with errors lower than ± 1°C, the lowest percentage was 83%.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies