Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Spare parts allocation optimization in a multi-echelon support system based on multi-objective particle swarm optimization metod

Tytuł:
Spare parts allocation optimization in a multi-echelon support system based on multi-objective particle swarm optimization metod
Autorzy:
Wang, Y.
Zhao, J.
Jia, X.
Tian, Y.
Data publikacji:
2014
Słowa kluczowe:
MOPSO
części zamienne
alokacja
optymalizacja
prawdopodobieństwo wsparcia
spare parts
allocation
optimization
support probability
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Spare parts allocation optimization in a multi-echelon support system presents a difficult problem which involves non-linear objective function and integer variables to be optimized. In this paper, a multi-objective optimization model was developed, which maximizes support probability and minimizes support costs. In order to solve the optimization problem, an improved multi-objective particle swarm optimization (MOPSO) method was utilized. In this method, techniques of dimensions reduction and rules-based multi-objective optimization were employed, which can improve the efficiency of MOPSO method. A numerical example was given to show the performance of proposed method.
Optymalizacja alokacji części zamiennych w wieloszczeblowym systemie wspomagania stanowi trudne zagadnienie, które wymaga optymalizacji nieliniowej funkcji celu oraz zmiennych całkowitych. W niniejszej pracy, opracowano wielokryterialny model optymalizacyjny, który maksymalizuje prawdopodobieństwo wsparcia i minimalizuje jego koszty. W celu rozwiązania problemu optymalizacyjnego, wykorzystano ulepszoną metodę wielokryterialnej optymalizacji rojem cząstek (MOPSO). W metodzie tej wykorzystano techniki redukcji wymiarów oraz wielokryterialnej optymalizacji algorytmowej, które mogą poprawić efektywność metody MOPSO. Zasady proponowanej metody zilustrowano przykładem numerycznym.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies