Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and Localized Active Contour Model

Tytuł:
Automatic segmentation of cell nuclei using Krill Herd optimization based multi-thresholding and Localized Active Contour Model
Autorzy:
Beevi K., S.
Nair, M. S.
Bindu, G. R.
Data publikacji:
2016
Słowa kluczowe:
histopathology
cell nuclei segmentation
Krill Herd optimization
localized active contour model
multi-thresholding
bio-inspired computing
histopatologia
segmentacja jądra komórkowego
progowanie
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Analysis of tissue components in histopathology image stays on as the gold standard in detecting different types of cancers. Active Contour Models (ACM) serve as a widely useful tool in object segmentation in pathology images. Since the ACMs are susceptible to initial contour placement, efficiency of object detection is very much influenced by the selection of primary curve placement technique. In this paper, in order to handle diffused intensities present along object boundaries in histopathology images, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage. Krill Herd Algorithm (KHA) based optimal curve placement provides better initial boundaries compared with other detection techniques. The segmentation performance is investigated based on Housdorff (HD) and Maximum Absolute Distance (MAD) measures. The algorithm also shows comparable performance with other state-of-the-art techniques in terms of quantitative measures such as Precision, Accuracy and Touching Nuclei Resolution when applied to complex images of stained breast biopsy slides.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies