Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A short note on post-hoc testing using random forests algorithm: Principles, asymptotic time complexity analysis, and beyond

Tytuł:
A short note on post-hoc testing using random forests algorithm: Principles, asymptotic time complexity analysis, and beyond
Autorzy:
Štěpánek, Lubomír
Habarta, Filip
Mala, Ivana
Marek, Luboš
Data publikacji:
2022
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
When testing whether a continuous variable differs between categories of a factor variable or their combinations, taking into account other continuous covariates, one may use an analysis of covariance. Several post-hoc methods, such as Tukey’s honestly significant difference test, Scheffé’s, Dunn’s, or Nemenyi’s test are well-established when the analysis of covariance rejects the hypothesis there is no difference between any categories. However, these methods are statistically rigid and usually require meeting statistical assumptions. In this work, we address the issue using a random forest-based algorithm, practically assumption-free, classifying individual observations into the factor’s categories using the dependent continuous variable and covariates on input. The higher the proportion of trees classifying the observations into two different categories is, the more likely a statistical difference between the categories is. To adjust the method’s first-type error rate, we change random forest trees’ complexity by pruning to modify the proportions of highly complex trees. Besides simulations that demonstrate a relationship between the tree pruning level, tree complexity, and first-type error rate, we analyze the asymptotic time complexity of the proposed random forest-based method compared to established techniques.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies