Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Semilinear Sets and Counter Machines : a Brief Survey

Tytuł:
Semilinear Sets and Counter Machines : a Brief Survey
Autorzy:
Ibarra, O. H.
Seki, S.
Data publikacji:
2015
Słowa kluczowe:
semilinear set
reversal bounded counter machine
Parikh’s theorem
linear Diophantine equations
descriptional complexity
closure property
decidable
undecidable
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Semilinear sets are one of the most important concepts in theoretical computer science, as illustrated by the fact that the set of nonnegative integer solutions to any system of Diophantine equations is semilinear. Parikh’s theorem enables us to represent any semilinear set as a pushdown automaton (PDA).We summarize recent results on the descriptional complexity of conversions among different representations of a semilinear set: as a vector set (conventional), a finite automaton (FA), a PDA, etc.. We also discuss semilinearity-preserving operations like union, intersection, and complement. We use Parikh’s theorem to enlarge the class of finite-state machines that can represent semilinear sets. In particular, we give a simpler proof of a known result that characterizes semilinear sets in terms of machines with reversal-bounded counters. We then investigate the power of such a machine with only one counter in the context of a long-standing conjecture about repetition on words.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies