Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Application of a deep-learning neural network for image reconstruction from a single-pixel infrared camera

Tytuł:
Application of a deep-learning neural network for image reconstruction from a single-pixel infrared camera
Autorzy:
Urbaś, Sebastian
Więcek, Bogusław
Data publikacji:
2024
Słowa kluczowe:
single-pixel imaging
compressive sensing
thermal imaging
convolutional neural network
dataset augmentation
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The article presents the simulation results of a single-pixel infrared camera image reconstruction obtained by using a convolutional neural network (CNN). Simulations were carried out for infrared images with a resolution of 80 × 80 pixels, generated by a low-cost, low-resolution thermal imaging camera. The study compares the reconstruction results using the CNN and the ℓ₁ reconstruction algorithm. The results obtained using the neural network confirm a better quality of the reconstructed images with the same compression rate expressed by the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies