Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network

Tytuł:
Parametric Prediction of FDM Process to Improve Tensile Properties Using Taguchi Method and Artificial Neural Network
Autorzy:
Ali, Dina
Huayier, Abdullah F.
Enzi, Abass
Data publikacji:
2023
Słowa kluczowe:
additive manufacturing
3d printing
printing parameters
artificial neural network
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Fused deposition modeling (FDM) is a popular 3D printing technique that creates parts by heating, extruding, and depositing filaments made of thermoplastic polymers. The processing parameters have a considerable impact on the characteristics of FDM-produced parts. This paper focuses on the parametric prediction of the FDM process to predict ultimate tensile strength and determine a mathematical model using the Taguchi method and Artificial Neural Network. Five manufacturing variables, such as layer thickness, print speed, orientation angle, number of parameters, and nozzle temperature at five levels, are used to study the mechanical properties of PLA material to manufacture specimens using FDM 3D printer. The specimens are produced for tensile tests in accordance with ASTM-D638 standards, and the process parameters are established using the Taguchi orthogonal array experimental design technique. The results proved that the printing process parameters significantly impacted the tensile strength by changing the tensile test values between 37 MPa and 53MPa. Also, the neural network predicted the tensile strength values, and the maximum error was equal to 8.91%, while the mathematical model had a maximum error equal to 19.96%.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies