Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cooperation in Transport of Chemical Substances : A Complexity Approach within Membrane Computing

Tytuł:
Cooperation in Transport of Chemical Substances : A Complexity Approach within Membrane Computing
Autorzy:
Valencia-Cabrera, L.
Orellana-Martín, D.
Martínez-del-Amor, M. A.
Riscos-Núñez, A.
Pérez-Jiménez, M. J.
Data publikacji:
2017
Słowa kluczowe:
membrane computing
polarizationless P systems with active membranes
cooperative rules
P versus NP problem
SAT problem
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Membrane computing is a computing paradigm providing a class of distributed parallel computing devices of a biochemical type whose process units represent biological membranes. In the cell-like basic model, a hierarchical membrane structure formally described by a rooted tree is considered. It is well known that families of such systems where the number of membranes can only decrease during a computation (for instance by dissolving membranes), can only solve in polynomial time problems in class P. P systems with active membranes is a variant where membranes play a central role in their dynamics. In the seminal version, membranes have an electrical polarization (positive, negative, or neutral) associated in any instant, and besides being dissolved, they can also replicate by using division rules. These systems are computationally universal, that is, equivalent in power to deterministic Turing machines, and computationally efficient, that is, able to solve computationally hard problems in polynomial time. If polarizations in membranes are removed and dissolution rules are forbidden, then only problems in class P can be solved in polynomial time by these systems (even in the case when division rules for non-elementary membranes are permitted). In that framework it has been shown that by considering minimal cooperation (left-hand side of such rules consists of at most two symbols) and minimal production (only one object is produced by the application of such rules) in object evolution rules, such systems provide efficient solutions to NP-complete problems. In this paper, minimal cooperation and minimal production in communication rules instead of object evolution rules is studied, and the computational efficiency of these systems is obtained in the case where division rules for non-elementary membranes are permitted.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies