Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development of a machine learning-based design optimization method for crashworthiness analysis

Tytuł:
Development of a machine learning-based design optimization method for crashworthiness analysis
Autorzy:
Borse, A.
Gulakala, R.
Stoffel, M.
Data publikacji:
2024
Słowa kluczowe:
crashworthiness design
generative adversarial network
reinforcement learning
nonlinear shell theory
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This article investigates design optimisation in the automotive field using machine learning (ML). A thin-walled crash box under axial impact is studied and the design parameters are optimised for front-impact crash tests. This study is based on geometrically and physically nonlinear shell theory, finite element analysis (FEA), dynamic buckling analysis and design optimisation using ML. An artificial neural network framework consisting of various ML methods is developed. A generative adversarial network is established for data generation and reinforcement learning is implemented to automate exploration of the design parameter. This ML framework is proven to determine optimal parameters under predefined crashworthiness constraints.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies