Tytuł pozycji:
Algorytm automatycznej klasyfikacji w oparciu o sygnały źródłowe EEG i jego implementacja
Celem artykułu jest przedstawienie algorytmu klasyfikacji sygnałów EEG opartego na rozwiązywaniu zagadnienia odwrotnego. Proponowana metoda klasyfikacji wykorzystuje teorię grafów. Dla surowych sygnałów zastosowano algorytm wyznaczania widmowej gęstości mocy (PSD). Wykonane testy potwierdziły poprawność klasyfikacji na poziomie przekraczającym 90%. Dzięki rozwiązaniu zagadnienia odwrotnego można było uzyskać informację o miejscach, w których sygnały związane z planowaniem ruchu mają swoje źródło.
The purpose of the article is to present the testing algorithm for the classification of EEG signals based on the inverse solution. The proposed method of classification is based on the graph theory. The algorithm for determining the power spectral density (PSD) was used for the raw signals. The tests performed with the use of the automatic algorithm confirmed the accuracy of classification at the level exceeding 90%. With the solution of the inverse problem information was obtained about places where signals associated with planning movement have their sources.