Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Combined simulated annealing and improved binary PSO based optimal corona ring design for high voltage transmission line

Electric stress is caused by the high field in the metal flange at the end. Corona and surface electrical discharges will be triggered, which may cause early deterioration. Under extreme circumstances, a total insulation flash over will happen. Both internal and external discharge activities are taken into consideration while constructing the ideal insulator in typical conditions. When the insulator is subjected to high voltage there will be an uneven electric field distribution occurs. This will reduce the reliability of the insulator and ageing occurs. It will leads to damage of insulator and replacement of insulator. To protect insulator from heavier damage due to uneven electric field is negated by using corona ring in high voltage transmission line. Corona ring makes the uneven electric field distribution into uniform electric field hence the damage of insulator is avoided. This paper demonstrates how to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 765 kV ac using software packages based on the idea of numerical analysis technique. This work uses ANSYS Maxwell to compute the electric field distribution in high voltage and low voltage terminals for different diameters at varying heights, both with and without a corona ring. ANSYS is used to calculate mechanical strength of insulator. The structural analysis, stress analysis and thermal analysis carried out to check the withstanding capability of insulator during heavy force, heavy stress and high temperature. The main objective is to reduce the maximum Electric field distribution of the along 220 kV. The optimization is carried out by through the use of Combined Simulated Annealing and Improved Binary Particle Swarm Optimization (CSAIBPSO).
Naprężenia elektryczne są spowodowane wysokim polem w metalowym kołnierzu na końcu. Wystąpią wyładowania koronowe i powierzchniowe, które mogą spowodować przedwczesne zniszczenie. W ekstremalnych okolicznościach nastąpi całkowite przeskok izolacji. Przy konstruowaniu idealnego izolatora w typowych warunkach brane są pod uwagę zarówno wewnętrzne, jak i zewnętrzne działania związane z wyładowaniami. Gdy izolator zostanie poddany działaniu wysokiego napięcia, nastąpi nierównomierny rozkład pola elektrycznego. Zmniejszy to niezawodność izolatora i nastąpi starzenie się. Doprowadzi to do uszkodzenia izolatora i wymiany izolatora. Aby chronić izolator przed większymi uszkodzeniami spowodowanymi nierównomiernym polem elektrycznym, zanegowano użycie pierścienia koronowego w linii przesyłowej wysokiego napięcia. Pierścień koronowy powoduje nierównomierny rozkład pola elektrycznego na jednolite pole elektryczne, dzięki czemu unika się uszkodzenia izolatora. W artykule przedstawiono sposób oceny pola elektrycznego i rozkładu napięcia wzdłuż izolatorów kompozytowych dla napięć systemowych w zakresie od 765 kV prądu przemiennego przy użyciu pakietów oprogramowania opartych na idei techniki analizy numerycznej. W tej pracy wykorzystano ANSYS Maxwell do obliczenia rozkładu pola elektrycznego w zaciskach wysokiego i niskiego napięcia dla różnych średnic i różnych wysokości, zarówno z pierścieniem koronowym, jak i bez niego. ANSYS służy do obliczania wytrzymałości mechanicznej izolatora. Analiza strukturalna, analiza naprężeń i analiza termiczna przeprowadzana w celu sprawdzenia wytrzymałości izolatora podczas dużych sił, dużych naprężeń i wysokiej temperatury. Głównym celem jest zmniejszenie maksymalnego rozkładu pola elektrycznego wzdłuż 220 kV. Optymalizację przeprowadza się poprzez zastosowanie połączonego symulowanego wyżarzania i ulepszonej optymalizacji roju cząstek binarnych (CSAIBPSO).
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies