Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Decomposition and Approximation of Loopy Bayesian Networks

Tytuł:
Decomposition and Approximation of Loopy Bayesian Networks
Autorzy:
Dong, J.
Chen, F.
Huo, Y.
Liu, H.
Data publikacji:
2013
Słowa kluczowe:
Bayesian network
conditional probability table
decomposition
inference
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper proposes a new method, conditional probability table (CPT) decomposition, to analyze the independent and deterministic components of CPT. This method can be used to approximate and analyze Baysian networks. The decomposition of Bayesian networks is accomplished by representing CPTs as a linear combination of extreme CPTs, which forms a new framework to conduct inference. Based on this new framework, inference in Bayesian networks can be done by decomposing them into less connected and weighted subnetworks. We can achieve exact inference if the original network is decomposed into singly-connected subnetworks. Besides, approximate inference can be done by discarding the subnetworks with small weights or by a partial decomposition and application of belief propagation (BP) on the still multiply-connected subnetworks. Experiments show that the decomposition-based approximation outperforms BP in most cases.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies