Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI

Tytuł:
A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI
Autorzy:
Yang, Tiejun
Song, Jikun
Li, Lei
Data publikacji:
2019
Słowa kluczowe:
magnetic resonance imaging
convolutional neural network
random forests
brain tumor segmentation
rezonans magnetyczny
konwolucyjna sieć neuronowa
las losowy
segmentacja guza
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The segmentation of brain tumors in magnetic resonance imaging (MRI) images plays an important role in early diagnosis, treatment planning and outcome evaluation. However, due to gliomas' significant diversity in structure, the segmentation accuracy is low. In this paper, an automatic segmentation method integrating the small kernels two-path convolu-tional neural network (SK-TPCNN) and random forests (RF) is proposed, the feature extrac-tion ability of SK-TPCNN and the joint optimization capability of model are presented respectively. The SK-TPCNN structure combining the small convolutional kernels and large convolutional kernels can enhance the nonlinear mapping ability and avoid over-fitting, the multiformity of features is also increased. The learned features from SK-TPCNN are then applied to the RF classifier to implement the joint optimization. RF classifier effectively integrates redundancy features and classify each MRI image voxel into normal brain tissues and different parts of tumor. The proposed algorithm is validated and evaluated in the Brain Tumor Segmentation Challenge (Brats) 2015 challenge Training dataset and the better performance is achieved.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies