Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Radon‐wavelet based novel image descriptor for mammogram mass classification

Tytuł:
Radon‐wavelet based novel image descriptor for mammogram mass classification
Autorzy:
Obaidullah, Sk Md
Ahmed, Sajib
Gonçalves, Teresa
Rato, Luís
Data publikacji:
2020
Słowa kluczowe:
image descriptor
radon transform
mammography
breast cancer
classification
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Mammography based breast cancer screening is very popular because of its lower costing and readily availability. For automated classification of mammogram images as benign or malignant machine learning techniques are involved. In this paper, a novel image descriptor which is based on the idea of Radon and Wavelet transform is proposed. This method is quite efficient as it performs well without any clinical information. Performance of the method is evaluated using six different classifiers namely: Bayesian network (BN), Linear discriminant analysis (LDA), Logistic, Support vector machine (SVM), Multilayer perceptron (MLP) and Random Forest (RF) to choose the best performer. Considering the present experimental framework, we found, in terms of area under the ROC curve (AUC), the proposed image descriptor outperforms, upto some extent, previous reported experiments using histogram based hand‐crafted methods, namely Histogram of Oriented Gradient (HOG) and Histogram of Gradient Divergence (HGD) and also Convolution Neural Network (CNN). Our experimental results show the highest AUC value of 0.986, when using only the carniocaudal (CC) view compared to when using only the mediolateral oblique (MLO) (0.738) or combining both views (0.838). These results thus proves the effectiveness of CC view over MLO for better mammogram mass classification.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies