Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modified U-Net architecture for semantic segmentation of diabetic retinopathy images

Tytuł:
Modified U-Net architecture for semantic segmentation of diabetic retinopathy images
Autorzy:
Sambyal, Nitigya
Saini, Poonam
Syal, Rupali
Gupta, Varun
Data publikacji:
2020
Słowa kluczowe:
fundus image
microaneurysm
hard exudates
semantic segmentation
modified U-Net
diabetic retinopathy
obraz dna oka
wysięk twardy
segmentacja semantyczna
retinopatia cukrzycowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Segmentation of lesions from fundus images is an essential prerequisite for accurate severity assessment of diabetic retinopathy. Due to variation in morphologies, number and size of lesions, the manual grading process becomes extremely challenging and time-consuming. This necessitates the need of an automatic segmentation system that can precisely define the region of interest boundaries and assist ophthalmologists in speedy diagnosis along with diabetic retinopathy severity grading. The paper presents a modified U-Net architecture based on residual network and employs periodic shuffling with sub-pixel convolution initialized to convolution nearest neighbour resize. The proposed architecture has been trained and validated for microaneurysm and hard exudate segmentation on two publicly available datasets namely IDRiD and e-ophtha. For IDRiD dataset, the network obtains 99.88% accuracy, 99.85% sensitivity, 99.95% specificity and dice score of 0.9998 for both microaneurysm and exudate segmentation. Further, when trained on e-ophtha and validated on IDRiD dataset, the network shows 99.98% accuracy, 99.88% sensitivity, 99.89% specificity and dice score of 0.9998 for microaneurysm segmentation. For exudates segmen-tation, the model obtained 99.98% accuracy, 99.88% sensitivity, 99.89% specificity and dice score of 0.9999, when trained on e-ophtha and validated on IDRiD dataset. In comparison to existing literature, the proposed model provides state-of-the-art results for retinal lesion segmentation.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies