Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform

Tytuł:
Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform
Autorzy:
Kumar, M.
Pachori, R. B.
Rajendra Acharya, U.
Data publikacji:
2018
Słowa kluczowe:
atrial fibrillation
ECG segment
flexible analytic wavelet transform
entropy features
classification
migotanie przedsionków
elektrokardiogram
wybór cech
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The electrocardiogram (ECG) signals are widely used to diagnose the AF. Automated diagnosis of AF can aid the clinicians to make a more accurate diagnosis. Hence, in this work, we have proposed a decision support system for AF using a novel nonlinear approach based on flexible analytic wavelet transform (FAWT). First, we have extracted 1000 ECG samples from the long duration ECG signals. Then, log energy entropy (LEE), and permutation entropy (PEn) are computed from the sub-band signals obtained using FAWT. The LEE and PEn features are extracted from different frequency bands of FAWT.We have found that LEE features showed better classification results as compared to PEn. The LEE features obtained maximum accuracy, sensitivity, and specificity of 96.84%, 95.8%, and 97.6% respectively with random forest (RF) classifier. Our system can be deployed in hospitals to assist cardiac physicians in their diagnosis.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies