Tytuł pozycji:
Remarks on multivariate extensions of polynomial based secret sharing schemes
We introduce methods that use Gröbner bases for secure secret sharing schemes. The description is based on polynomials in the ring R = K[X1,...,Xl] where identities of the participants and shares of the secret are or are related to ideals in R. Main theoretical results are related to algorithmical reconstruction of a multivariate polynomial from such shares with respect to given access structure, as a generalisation of classical threshold schemes. We apply constructive Chinese remainder theorem in R of Becker and Weispfenning. Introduced ideas find their detailed exposition in our related works.
Wprowadzamy metody wykorzystujące bazy Gröbnera do schematów podziału sekretu. Opis bazuje na wielomianach z pierścienia R = K[X1,...,Xl], gdzie tożsamości użytkowników oraz ich udziały są lub są związane z ideałami w R. Główne teoretyczne rezultaty dotyczą algorytmicznej rekonstrukcji wielomianu wielu zmiennych z takich udziałów zgodnie z zadaną (dowolną) strukturą dostępu, co stanowi uogólnienie klasycznych schematów progowych. W pracy wykorzystujemy konstruktywną wersję Chińskiego twierdzenia o resztach w pierścieniu R pochodzącą od Beckera i Weispfenninga. Wprowadzone idee znajdują swój szczegółowy opis w naszych związanych z tym tematem pracach.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).