Tytuł pozycji:
High accuracy recognition of muscle fatigue based on sEMG multifractal and LSTM
A muscle fatigue identification method that integrates the multifractal of sEMG with LSTM is proposed. The MFDMA method was introduced to analyze and extract non-linear prop- erties of sEMG. The significance of differences between the fatigue and non-fatigue states in terms of spectral width, Hurst index variation difference, and peak singularity index was determined using the t-test. A LSTM networks under the combined feature set comprising multiple fractals was built, and its recognition accuracy was 98.91%. The LSTM network model was found to be more accurate than other classification methods in identifying muscle fatigue under the same feature set.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).