Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A hybrid approach for the delineation of brain lesion from CT images

Brain lesion segmentation from radiological images is the most important task in accurate diagnosis of patients. This paper presents a hybrid approach for the segmentation of brain lesion from computed tomography (CT) images based on the combination of fuzzy clustering using hyper tangent function as the robust kernel and distance regularized level set evolution (DRLSE) function as the edge based active contour method. Kernel based fuzzy clustering method divides the image into different regions. These regions can be used to find region of interest by using DRLSE algorithm to generate the optimal region boundary. The proposed method results in smooth boundary of the required regions with high accuracy of segmentation. In this paper, results are compared with standard fuzzy c-means (FCM) clustering, spatial FCM, robust kernel based fuzzy clustering (RFCM) and DRLSE algorithms. The performance of the proposed method is evaluated on CT scan images of hemorrhagic lesion, which shows that our method can segment brain lesion more accurately than the other conventional methods.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies