Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Nonlinear Blind Source Separation of Multi-Sensor signals for Marine Diesel Engine Fault Diagnosis

Tytuł:
Nonlinear Blind Source Separation of Multi-Sensor signals for Marine Diesel Engine Fault Diagnosis
Autorzy:
Chenxing, S.
Zhe, T.
Yuelei, Z.
Data publikacji:
2013
Słowa kluczowe:
marine diesel engine
fault diagnosis
nonlinear ICA
GA
chaos
silniki okrętowe Diesla
diagnostyka
ślepa separacja
multiczujniki
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Marine diesel engines are the heart of the ships. They provide the power for the normal propulsion of the vessels. Any unexpected failures occurred in the marine diesel engines may lead to terrible accident. It is therefore imperative to monitor the marine diesel engines to prevent impending faults. In the present work, a new defect detection method for the marine diesel engines using the artificial intelligence has been proposed. The vibration signals of the marine diesel engine were recorded by the multi-channel sensors. The nonlinear independent component analysis (NICA) was adopted as the data fusion approach to find the characteristic vibration signals of the marine diesel engine fault from the multiply sensor collections. Then the Empirical Mode Decomposition (EMD) was employed to extract the feature vector of the fused vibration signals. Lastly, the Genetic Algorithm-Chaos and RBF neural network was used to recognize the fault patterns of the marine diesel engine. The experimental tests were implemented in a real ship to evaluate the effectiveness of the proposed diagnosis approach. The diagnosis results have showed that distinguished fault features have been extracted and the fault identification accuracy is satisfactory. In addition, the classification rate of the proposed method is superior to the traditional linear ICA based methods.
Wykorzystano nieliniową niezależną analizę składników NICA do diagnostyki wibracji silnika Diesla. Zastosowano metodę empirycznej dekompozycji EMD do separacji sygnałów. Następnie wykorzystano sieci neuronowe i algorytm genetyczny do identyfikacji uszkodzeń.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies