Tytuł pozycji:
Novel thermal method for the recognition and supporting the identification of solids and their thermal parameters
This article proposes a concept of new method for supporting the identification of solids and their thermal parameters. This concept is based on the idea of implementation of metrological methods and solutions known from hot-wire anemometry in applications for supporting the thermal identification of solids. The idea of the method is based on the fact that measuring head of the probe, comprising a resistance – temperature transducer heated by electric current, is continuously maintained in a stable thermal contact with the tested material, while the temperature of the resistance – temperature transducer is controlled by the constant – temperature controlled system. The characteristic parameters of the head – material system are determined based on measurement of the flux of heat transferred from the head in its various states of heating. These parameters are compared to parameters obtained for different materials used as standards during the system calibration process, which allows for a measured parameters to be correlated with calibration ones, classifying ultimately the tested material into specific class of materials. Selected methods of artificial intelligence can be applied here. In complex solutions it is possible to use measuring heads comprising higher number of resistance – temperature transducers, both passive and active ones, an array of measuring heads, complex algorithms of thermal excitations and interpretation of measured signals or the analysis of thermal waves propagation in a tested material.
Autor pracy proponuje nową koncepcję metody wspomagania identyfikacji ciał stałych oraz ich parametrów cieplnych. Koncepcja ta oparta jest o ideę implementacji metod i rozwiązań metrologicznych znanych z termoanemometrii w zastosowaniach do wspomagania identyfikacji termicznej ciał stałych. Podstawowa idea proponowanej metody pomiarowej polega na tym, że głowica pomiarowa zawierająca nagrzewany prądem elektrycznym rezystancyjny przetwornik temperatury utrzymywana jest w stabilnym kontakcie termicznym z badaną substancją, a poziom temperatury rezystancyjnego przetwornika temperatury zadawany jest poprzez sterowany układ stałotemperaturowy. Na podstawie pomiaru strumienia ciepła odbieranego z głowicy w różnych stanach nagrzania wyznaczane są parametry charakterystyczne układu głowica – substancja. Parametry te porównywane są z parametrami uzyskanymi dla różnych substancji w procesie wzorcowania układu, co pozwala na określenie korelacji parametrów wzorcowych i mierzonych, a tym samym na zaklasyfikowanie badanej substancji do danej klasy materiałów. Korzystne może tu być zastosowanie metod sztucznej inteligencji. W rozbudowanych rozwiązaniach możliwe jest zastosowanie w głowicy większej ilości rezystancyjnych przetworników temperatury, zarówno pasywnych jak i aktywnych, stosowanie matrycy głowic, zastosowanie złożonych algorytmów wymuszeń termicznych i interpretacji sygnałów mierzonych, jak również badanie propagacji fal termicznych w badanej substancji.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).