Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The scattering of the sound field by thin unclosed spherical shell and ellipsoid

Tytuł:
The scattering of the sound field by thin unclosed spherical shell and ellipsoid
Autorzy:
Shushkevich, G.
Shushkevich, S.
Stachowicz, F.
Data publikacji:
2016
Słowa kluczowe:
sound field
spherical shell
ellipsoid of rotation
spherical radiator
pole akustyczne
kulista powłoka
elipsoida obrotowa
radiator kulisty
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper the result of solution of the axisymmetric problem of the scattering of sound field by unclosed spherical shell and a soft prolate ellipsoid of rotation is presented. Spherical radiator is located in a thin unclosed spherical shell as the source of acoustic field. The equation of the spheroidal boundary is given in spherical coordinates. Scattered pressure field is expressed in terms of spherical wave functions. Using corresponding theorems of addition and assuming small eccentricity of ellipse, the solution of boundary value problem is reduced to solving dual equations with Legendre's polynomials, which are converted to infinite system of linear algebraic equations of the second kind with completely continuous operator. Numerical results are given for various values of the parameters of the problem.
W niniejszym opracowaniu zaprezentowano wyniki rozwiązania osiowosymetrycznego problemu rozproszenia pola dźwiękowego przez niezamkniętą powłokę kulistą oraz lekko wydłużoną elipsoidę. Radiator kulisty znajdujący się w cienkiej niezamkniętej powłoce kulistej jest źródłem pola akustycznego. Równanie granicy kulistej podane jest we współrzędnych sferycznych. Rozproszone pole ciśnienia jest wyrażona w funkcji fal sferycznych. Stosując odpowiednie twierdzenia dodawania i przy założeniu zbyt małej mimośrodowości elipsy, rozwiązanie problemu wartości brzegowych jest ograniczone do rozwiązania podwójnych równań wielomianów Legendre'a, które przekształca się w nieskończony układ liniowych równań algebraicznych drugiego rodzaju z w pełni ciągłym operatorem. Wyniki obliczeń numerycznych są podane dla różnych wartości analizowanych parametrów.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies