Tytuł pozycji:
Damage behaviour and GTN parameter analysis of TC4 powder metallurgy titanium alloy during hot deformation
The damage and fracture behaviour of TC4 powder metallurgy titanium alloy were studied by isothermal uniaxial tensile tests. The results show that microcracks formed at grain boundaries, inclusions, initial pores, and adjacent pores and cracks were gathered and perpendicularly linked to the tensile direction, eventually leading to the macroscopic fracture of the material. Increasing the temperature and strain rate promotes the occurrence of dynamic recovery and subgrain merging nucleation, which leads to an increase in the fracture strain and plasticity of the material. Combined with the response surface methodology and genetic optimization algorithm, the GTN damage parameters were obtained by the reverse calibration method. The calculated flow stresses, based on the GTN damage model, are in good agreement with the experimental ones, indicating that the damage parameters can reflect the damage process of the material. In this study, the sensitivity of the damage parameters along with the influence of temperature and strain rate on them was analysed.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)