Tytuł pozycji:
Optimal tracking controllers with Off-policy Reinforcement Learning Algorithm in Quadrotor
In this study, the optimal tracking control problem for the quadrotor which is a highly coupling system with completely unknown dynamics is addressed based on data by introducing the reinforcement learning (RL) technique. The proposed Off-policy RL algorithm does not need any knowledge of quadrotor model. By collecting data, which is the states of quadrotor system then using an actor-critic networks (NNs) to solve the optimal tracking trajectory problem. Finally, simulation results are provided to illustrate the effectiveness of proposed method.
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)