Tytuł pozycji:
Texture Analysis Method Based on Fractional Fourier Entropy and Fitness-scaling Adaptive Genetic Algorithm for Detecting Left-sided and Right-sided Sensorineural Hearing Loss
To detect the sensorineural hearing loss (SNHL) from healthy people accurately, we used magnetic resonance imaging (MRI) to obtain the imaging data, and then proposed a new computer-aided diagnosis (CAD) system, on the basis of texture analysis method. In the first, we extracted 12-element feature from each brain image via fractional Fourier entropy (FRFE). Afterwards, multilayer perceptron (MLP) was employed as the classifier, which was trained by a novel fitness-scaling adaptive genetic algorithm (FSAGA). The statistical analysis over 49 subjects showed the overall accuracy of our method yielded 95.51%. Experimental results performed better than four state-of-the-art weight optimization methods, and this CAD system give significantly better performance than manual interpretation.