Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Predykcja krótkoterminowa zużycia wody w budynkach wielorodzinnych z wykorzystaniem technik uczenia maszynowego

Tytuł:
Predykcja krótkoterminowa zużycia wody w budynkach wielorodzinnych z wykorzystaniem technik uczenia maszynowego
Autorzy:
Śmigiel, Sandra
Stańczyk, Justyna
Dzimińska, Paulina
Ledziński, Damian
Andrysiak, Tomasz
Licznar, Piotr
Data publikacji:
2023
Słowa kluczowe:
sieci wodociągowe
uczenie maszynowe
wodomierze
zużycie wody
water supply network
machine learning
water meters
water consumption
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W praktyce eksploatacyjnej systemów dystrybucji wody brak jest wdrożenia zaawansowanych narzędzi przetwarzania i analizowania danych monitoringowych. Dotyczy to wielu poziomów zarządzania wodociągami, w ramach których dochodzi do rejestracji pomiarów, najczęściej tworzących nieinterpretowalne zbiory danych. Wraz z pojawieniem się możliwości rejestracji danych, które można określić mianem wysokoczęstotliwościowych, istnieje potrzeba równoległego wdrażania odpowiednich technik z zakresu data science, stanowiących podstawę mądrych czy też inteligentnych sieci wodociągowych. By spełnić założenia dotyczące implementacji inteligencji na poziomie wodomierzy, koniecznym jest umożliwienie pomiaru zużycia wody z precyzyjnym interwałem pomiarowym oraz zaawansowanej analizy danych, które skutkować powinny efektywnym wnioskowaniem i zarządzaniem systemami dystrybucji wody. W niniejszym artykule zaprezentowano wyniki zastosowania modeli uczenia maszynowego w celu predykcji krótkoterminowej zużycia wody dla budynków wielorodzinnych. Do prognozowania zużycia wody wykorzystano modele liniowe, proste modele sieci neuronowych, algorytm najbliższych sąsiadów oraz drzewa decyzyjne. W ramach przeprowadzonych badań ocenie poddano cechy wyekstrahowane z przebiegu zużycia wody wraz z kombinacjami ich zestawów podawanymi na wejściu regresora. Zweryfikowano także, jak stopień agregacji danych oraz struktura budynku wpływają na błąd prognozowania.
The operational practice of water distribution systems lacks the implementation of advanced tools for processing and analyzing monitored data. This is the case at many levels of water supply management, where measurements are recorded, most often creating uninterpretable data sets. With the arrival of data recording capabilities that can be described as high-frequency, there is a need for a simultaneous implementation of suitable data science techniques as the basis for smart water supply networks. To achieve the goals of implementing intelligence at the water meter level, it is necessary to allow measurement of water consumption with a precise measurement interval and advanced data analysis, which should result in effective inference and management of water distribution systems. This paper presents the results of the use of machine learning models to predict short-term water consumption for multifamily buildings. Linear models, simple neural network, nearest neighbour algorithm and decision trees were used to predict water consumption. The study evaluated features extracted from the water consumption waveforms and combinations of data sets given to the input of the regression model. It was also verified how the degree of data aggregation and the structure of the building influence the prediction error.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies