Tytuł pozycji:
Pneumonia detection: A comprehensive study of diverse neural network architectures using chest X-rays
- Tytuł:
-
Pneumonia detection: A comprehensive study of diverse neural network architectures using chest X-rays
- Autorzy:
-
Akbar, Wajahat
Soomro, Abdullah
Hussain, Altaf
Hussain, Tariq
Ali, Farman
Haq, Muhammad Inam Ul
Attar, Raaz Waheeb
Alhomoud, Ahmed
AlZubi, Ahmad Ali
Alsagri, Reem
- Data publikacji:
-
2024
- Słowa kluczowe:
-
pneumonia detection
CNN model
chest X-ray
medical imaging
zapalenie płuc
rentgen klatki piersiowej
obrazowanie medyczne
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
Pneumonia is of deep concern in healthcare worldwide, being the most deadly infectious disease, especially among children. Chest radiographs are crucial for detecting it. However, certain vulnerable groups exhibit heightened susceptibility, emphasizing the critical nature of accurate diagnosis and timely intervention. This paper presents convolutional neural network (CNN) models for the detection of pneumonia from chest X-rays images. Among 20 different CNN models, we identified EfficientNet-B0 as the most accurate and efficient, boasting an impressive accuracy rate of 94.13%. Furthermore, the precision, recall, and F-score metrics for this model stand at 93.50%, 92.99%, and 93.14%, respectively. This research underscores the potential of CNNs to revolutionize pneumonia diagnosis.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).