Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Learning-based local quality assessment of reflectance confocal microscopy images for dermatology applications

Tytuł:
Learning-based local quality assessment of reflectance confocal microscopy images for dermatology applications
Autorzy:
Sikorska, Miroslawa
Skalski, Andrzej
Wodzinski, Marek
Witkowski, Alexander
Pellacani, Giovanni
Ludzik, Joanna
Data publikacji:
2021
Słowa kluczowe:
RCM
reflectance confocal microscopy
skin lesions
deep learning
image artifact
zmiany skórne
uczenie głębokie
artefakt obrazu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Background and objective: Skin cancer is one of the most common types of cancer and its early diagnosis significantly reduces patient morbidity and mortality. Reflectance confocal microscopy (RCM) is a modern and non-invasive method of diagnosis that is becoming popular amongst clinical dermatologists. The frequent occurrence of artifacts in the images is one of the most challenging factors in making a diagnosis based on RCM. It impedes the diagnosis process for the dermatologist and makes its automation difficult. In this work, we employ artificial neural networks to propose a local quality assessment system. It allows for the detection of artifacts and non-informative component images both retrospectively or in real-time during the examination. Methods: In this research we address the quality assessment issue by proposing an artificial intelligence-based solution. 612 RCM mosaics were divided into small component images and manually classified in order to train the ResNeXt model in the quality verification context. A trained network was used to create an application that marks individual classes of the component images on the mosaic. Results: We achieved the average classification precision of 0.98 both for the validation and test data sets. In addition, we present local quality assessment statistics of the 1540 cases of skin lesions to show which types of skin lesions most often present with artifacts in their RCM images. Conclusions: In this research we investigate the utility of the deep convolution neural networks for the local quality assessment of the RCM images. We propose an AI-based system that may be effectively used as real-time support for the dermatologist during a RCM examination and as a base for the automation of the diagnostic process.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies