Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Learning abstract visual reasoning via task decomposition: A case study in Raven progressive matrices

Tytuł:
Learning abstract visual reasoning via task decomposition: A case study in Raven progressive matrices
Autorzy:
Kwiatkowski, Jakub
Krawiec, Krzysztof
Data publikacji:
2024
Słowa kluczowe:
abstract visual reasoning
Raven progressive matrices
machine learning
problem decomposition
abstrakcyjne rozumowanie wizualne
uczenie maszynowe
rozkład problemu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Learning to perform abstract reasoning often requires decomposing the task in question into intermediate subgoals that are not specified upfront, but need to be autonomously devised by the learner. In Raven progressive matrices (RPMs), the task is to choose one of the available answers given a context, where both the context and answers are composite images featuring multiple objects in various spatial arrangements. As this high-level goal is the only guidance available, learning to solve RPMs is challenging. In this study, we propose a deep learning architecture based on the transformer blueprint which, rather than directly making the above choice, addresses the subgoal of predicting the visual properties of individual objects and their arrangements. The multidimensional predictions obtained in this way are then directly juxtaposed to choose the answer. We consider a few ways in which the model parses the visual input into tokens and several regimes of masking parts of the input in self-supervised training. In experimental assessment, the models not only outperform state-of-the-art methods but also provide interesting insights and partial explanations about the inference. The design of the method also makes it immune to biases that are known to be present in some RPM benchmarks.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies